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Perturbation Method for Phase-Equilibrium 
Calculations I 

E. M. Hendriks 2 

In phase equilibrium problems, the thermodynamic model used often contains a 
small parameter. For example, for cubic equations of state the interaction coef- 
ficients occurring in van der Waals-type mixing rules are often numerically 
small. The small parameter (e) enters the model then via the formula 

n n 

a= Z Z xlxj~(1-~o~) 
i --1 j = l  

Other examples include mixtures with compounds whose characteristic 
parameters cover a narrow range, diluted solutions, small amounts of 
polydisperse material in a solvent, and so on. In this paper we develop a general 
scheme to obtain the solution of thermodynamic problems such as the predic- 
tion of phase equilibria, using an expansion in the small parameter e. We also 
give a method to obtain a suitable zero-order (e = 0) system. The perturbation 
scheme may be helpful in the solution of difficult problems or as a tool in a 
sensitivity analysis. As an example we apply it to multicomponent mixtures, 
described through a two-parameter equation of state with small interaction 
coefficients. We show that for that case, if the number of components is large, it 
leads to computational savings. 

KEY WORDS: perturbation method; mixtures; thermodynamic properties; 
vapor-liquid equilibrium. 

1. I N T R O D U C T I O N  

In thermodynamics of phase equilibria one is concerned with problems 
such as the determination of a phase split at given pressure, temperature 
and mixture composition, bubble-point pressure at a given temperature 
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and liquid composition, and so on. The principle behind such (equilibrium) 
calculations has been formulated long ago by Gibbs. At given pressure and 
temperature, for instance, it amounts to locating the global minimum of 
the total Gibbs free energy in thermodynamic state space. A necessary 
condition following from this is the equality of chemical potentials 
in all phases. For instance, for vapor-liquid equilibrium (VLE) of an 
n-component mixture: 

#~=,u v ( i=1  ..... n) (1) 

and 

nV+nLi=nV i ( i=  1,..., n) (2) 

Here the superscripts L, V, and F denote liquid, vapor, and feed, respec- 
tively, and the n~ are mole numbers. Equation (2) expresses the condition 
of material balance. Thus, to determine a phase split, these equations have 
to be solved for the unknowns n L and n v. The solution corresponds to a 
stationary point of the total Gibbs free energy and it has to be tested if this 
corresponds to a global (or if one is interested in meta-stable states local) 
minimum. In this paper we assume that the thermodynamic model contains 
some small parameter 5, such as, for instance, may arise through the 
addition of extra terms to an existing model or through the numerical 
smallness of certain model parameters. The effect of this small parameter 
can, at least formally, be determined by means of a perturbation expansion. 
There are several possible motivations to investigate and carry out such an 
expansion. In some cases the "unperturbed" (e= 0) model will lead to a 
simplified set of equations, so that the perturbation expansion is a good 
alternative to arrive at the solution, which may be more attractive for com- 
putational reasons, or even the only way to arrive at an (approximate) 
solution at all. The perturbation series may also be used as a theoretical 
tool, to investigate the influence of certain parameters or model 
modifications on the solution (sensitivity analysis). 

The idea of a perturbation approach is, of course, not new and in fact 
its applications abound in all branches of the natural sciences. Also, in the 
field of phase equilibria it has been used [1, 2]. The aim of this paper is, 
however, to derive the form of the perturbation expansion as it holds in 
general for problems in phase equilibria. As an example we apply it to mul- 
ticomponent mixtures described by an equation of state with small binary 
parameters. 
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2. GENERAL PERTURBATION EXPANSION FOR PHASE 
EQUILIBRIUM EQUATIONS 

In this section we derive the form of the equations describing phase 
equilibrium resulting from the perturbation expansion. Thus we assume 
that the thermodynamic model used, and hence the chemical potential, 
contains a small parameter ~. As a consequence, the solution of the phase 
equilibrium equations will also depend on ~. We assume that it can--at  
least formally--be expanded in powers of e. Thus we write 

n~=n~(e)= ~ n~ke k (3) 
k = O  

p = p ( ~ ) =  ~ pke k (4) 
k = 0  

T= ;e(~)= s Tk~k (5) 
k - - 0  

in which the superscript y labels the phase. As we do not treat a specific 
phase equilibrium problem, at this stage, we treat all variables as 
depending on e. However, for an isothermal flash calculation, for example, 
the pressure p and temperature T are actually given constants. The 
chemical potential now depends on e both explicitly and implicitly, i.e., 
through composition, pressure, and temperature. We may expand it in 
powers of e: 

l (d~'l~/] ek 
/x,= ~_, ~ \-d-S,}o (6) 

k = O  

in which the symbol d/de stands for the total derivative with respect to 
and the subscript 0 implies that the quantity has to be evaluated at e = 0. 
We restrict ourselves to two-phase equilibrium, for convenience denoted as 
vapor (V) and liquid (L), and require the condition of material balance to 
be satisfied in each order exactly, i.e., 

nh + nV=nV o (7) 

and 

L V _ _  nik+nik--O ( k =  1, 2,...) (8) 

If we now substitute the perturbation expansion into Eq. ( t)  and equate 

840/10/1-5 
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the coefficients of all powers of e to zero, we obtain a hierarchy of 
equations: 

.~o = . v  ("unperturbed" system) (9) 

A4 ~k) - p/,tY-- Tk ff: = :(/~) (10) 

in which A is a n • n matrix and 4(k), :, and ff are n-vectors with elements 

A . :  + Ill) 

(O"i~ . (~"'~ . q~k)= L V (12) vi= A ~k Op /] o, wi= A \ dT] o' ni. = --nik 

and the elements of the vector :~k) can be calculated in each order k from 
the results of the previous corrections. The symbol A denotes taking the 

'difference between the two phases: AQ = QV_ QL. The expressions for rl ~) 
in the two lowest orders are 

and 

r~')= A \ ~ e J o  (first order) (13) 

rl2)=A {~{a2"i) 
\-SU: J o 

q-~ Zl j~. \ 0 n j ~ :  ~ j k \ ~ / o  "~l)q(kl 

(second order) 
J 

( 02"i ~ -(1) ( 63'"i ~ ct(1)q-!plZ\o~jOpjoCt j 

(14) 

The zero-order equation (9), is the equation for the "unperturbed" 
system, which results from substitutions of e = 0 into the original equation 
(1). This is, in general, still a set of coupled nonlinear equations, which, 
however, may be much simpler to solve due to the vanishing of e. The 
other equations (10) are all linear and involve the same n x n-matrix A in 
each order k; this matrix can be calculated from the solution of the "unper- 
turbed" (e = 0) problem alone. The same holds for ~ and ~. In each order 
we have to solve the linear system of equations (10) in which qi (we drop 
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the superscript k), Pk, and Tk are the unknowns. Since there are two 
unknowns more than equations, two extra relations have to be specified, 
corresponding to the type of phase equilibrium calculation one wants to 
perform. For instance, for an isothermal flash calculation, Pk and Tk 
vanish. For a saturation-point calculation the situation is a little more 
complicated. At such a point, which lies at the phase envelope (binodal), 
the amount of material in the incipient phase 7 is infinitesimally small, and 
hence also the q~. Taking the limit n ~ -+0 in Eq. (10) we observe 

~~Ao.qj=~j ~L(1,1~i~ L 1[/ O#i~ V) n O#i~ ~ 

(151 

where Oi-lim(qi/n~), remains finite at the phase envelope. Hence, for a 
saturation-point calculation the correction equations are of the form of 
Eq. (10) with A replace by .,{~, and qi by 0~, which have to satisfy 

Zqi~ - -0  (16) 
i 

SO that one extra relation must be specified, which will usually be of the 
form 

a T k + ( 1 - - a ) p k = 0  (17) 

where a e [0, 1] is constant. We note that, since A~ is an intensive matrix, 
:3~..4~ = 0, where ~ is the composition vector for the incipient phase 7. If 
we therefore multiply Eq. 10) with this vector on the left, we obtain 

(x, .  r + (~,. ,~) T~ + (~-/<*~) = 0 (18) 

From this and Eq. (17), Pk and Tk can be calculated first and substituted 
into Eq. (10). The q; then follow as the solution from Eq. (10) under the 
restriction given by Eq. (16). This is a soluble system, since rank(=,~ ~) = 
n - 1 .  

Without loss of generality we may put the total amount of moles n F to 
be unity, which we do hereafter. In that case hE= ~b is the liquid fraction 
("liquid-to-feed ratio"), and similarly, nV= 1 -~b is the fraction vaporized. 
In each order k, the solution of Eq. (10) gives rise to corrected values of the 
liquid fraction, 

~Sq~ = ~ qj (19) 
J 
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and of the mole fractions in the coexisting phases, 

L _ fbx~old + qi (20) 
Xi . . . .  ~ _1_ r 

- ~b) Xi.old -- qi (21) v ( 1  v 
Xi . . . .  - -  1 - -  ~ - -  r  

For saturation-point calculations 6~b=0 and the correction equations 
simplify to 

- x  ~ +a~c)i (22) Xi ,  new - -  / ,o ld  

where a L =  1 (bubble-point calculation) and a v = -1  (dew-point 
calculation). 

The matrix A in Eq. (11) plays an important role in the perturbation 
expansion. We note that the same matrix occurs in the Newton-Raphson 
step equations of the unperturbed system. These equations are in fact 
identical in form to Eq. (10), but with a different right-hand side, which 
becomes the differences of the chemical potentials themselves between the 
two phases. With the right-hand side equal to zero, Eq. (10) relates 
solutions at neighboring points in thermodynamic state space. This can be 
used to generate initial estimates from the solution in a neighboring point. 

The phase envelope of the unperturbed system will, in general, differ 
from the actual phase envelope. This means that there will be regions in 
which a phase split occurs but which will be single-phase regions for e = 0, 
and vice versa. This problem can be overcome, however, by extending the 
two-phase region of the unperturbed problem mathematically by allowing 
for unphysical values of the liquid fraction ~b, outside the interval [0, 1 ]. 
The corrected value of ~b will then lie within this interval. The reverse may 
also be the case, i.e., that the value of ~b becomes unphysical after correc- 
tion, indicating a single-phase point. 

We have presented the general perturbation scheme using pressure, 
temperature, and composition as basic variables, which are used in most 
practical applications. It is possible to use other variables, for instance, 
volume instead of pressure, and derive the corresponding perturbation 
expansion [1 ]. The perturbation approach can also be applied to the 
spinodal equations. The condition for a point to lie on the spinodal curve is 
2 = 0, where 2 is the smallest eigenvalue of A. This eigenvalue can also be 
expressed as a series in e. The terms in this series can be evaluated using 
the Rayleigh Schroedinger perturbation theory, known from quantum 
mechanics. 
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3. THE UNPERTURBED SYSTEM 

For the perturbation method to be useful, the thermodynamic model 
must contain a small parameter e, such that for ~ = 0 the phase equilibrium 
equations can be solved more easily. The hypothetical physical system 
described through the equations with e = 0, with its own phase diagram, is 
referred to as the unperturbed system. We mention two ways in which a 
small parameter can enter the equations. One possibility is through the 
overall (feed) composition Z: 

Z= Zo + ~z~ (23) 

where Yo may be the composition vector for a mixture with a fewer number 
of components. To justify the perturbation expansion in this case, the 
assumption must be made that Eq. (23), with the second term much 
smaller than the first, holds in both coexisting phases. With this type of 
ansatz Morrison and Kincaid [1] have studied the phase behavior of a 
mixture of a pure solvent and a small amount of polydisperse material. The 
other possibility is through the molecular parameters of the model, by 
writing any k-particle property Q as the sum of an unperturbed part and a 
perturbation: 

Q(il ..... i~) = Qo(il ..... ik) + eQ~(i~ ,..., ik) (24) 

(in applications, k will rarely exceed 2), with Q0 corresponding to the 
unperturbed system. In this formula it is convenient to define the scale of 
Q1 such that ~ equals unity. The expansion in e is then effectively an expan- 
sion in QI, so that e is just a bookkeeping parameter. The property Q will 
enter the thermodynamic model through its composition-averaged value: 

( Q )  = ~ x,x. . .xikQ(il , . . . ,  ik) (25) 
{o} 

or a similar sum. Of course, a division as in Eq. (24) can be done in various 
ways. However, we dispose of a guiding principle, through which we can 
achieve that not only the equations of the unperturbed system, but also the 
correction equations are simplified. This principle lies in the following 
theorem [3]: if the nontrivial part of the Gibbs free energy function 
G - R T Z x i l o g x i  depends upon composition only through a set of K 
scalar products 

B, = (2-/ql) (l = 1 ..... K) (26) 

then (i) the corresponding two-phase equilibrium equations can be reduced 
to a set of, at most, K +  1 equations in K +  1 unknowns; and (ii) the 



68 Hendriks 

correction equations (10) can be reduced to a linear system of size ~< K + 1. 
For the proof we refer to Ref. 2. To employ this principle, we must ensure 
that, for the unperturbed system, the conditions of the theorem apply with 
K,~ n. How to achieve this depends, of course, on the model, but there are 
some general possibilities. For example, we may take Qo as a product of k 
one-particle properties: 

k 

Qo(il ,..., ik) = [ I  ~/~ (factorization method) (27) 
1 = 1  

This makes sense, of course, only if the deviation from the actual value is 
(uniformly) small. Each parameter Q gives rise to a single scalar product B, 
with fli = ~/~ in Eq. (26). Another general method is the family approach, in 
which the species are divided among a (small) number of families s s 
(s = 1 ..... k) and Q0 is taken to depend only on the family labels: 

Qo(il ..... ik) = FEs(it),..., s(ik)] (family method) (28) 

where F(Sl,..., sk) is a k-family property. For notational convenience we 
have introduced the family indicator function s(i), which specifies the label 
of the family to which species i belongs. For each Q and each family there 
is one scalar product Bs, with/~s,i = 6s,~i) (Kronecker symbol) in Eq. (26). 
The function F in (28) must be chosen such as to minimize the Q -  Qo in 
an appropriate sense. It may, for instance, be taken to be the feed family- 
averaged value of Q: 

F(s~,...,sk)= ~', zi l...zikQ(i~ ..... ik) (29) 
im E g2Sm 

This is actually what is used when lumping schemes or pseudocomponents 
are employed. To conclude this section we give a concrete example, which 
is worked out later. Consider a mixture described through a two-parameter 
equation of state with van der Waals-type mixing rules: 

a= ~ ~ aijxixj (30) 
i = 1  j = l  

and 

b= ~ xibi (31) 
i = 1  

The quantities a o. and bi correspond to the Q above. The b parameter is 
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already a scalar product. We introduce the small parameter e through the 
formula 

a ~ = ~ ( 1  -e0~) (32) 

where ai is the value of the a parameter for the pure substance i, and 00. are 
the so-called interaction parameters, which are often numerically small. 
This makes the perturbation expansion feasible. The unperturbed system 
corresponds to a mixture with vanishing interaction coefficients. The scalalr 
products in Eq. (26) are the equation-of-state parameters, so that K =  2. 
Indeed, it has been shown before by Michelsen [4] that the phase 
equilibrium equations can be simplified to a set of only three equations. 
This is an example of the factorization method. The family method can be 
applied here, too, by taking 0a zero within each family and constant 
between families, for the unperturbed system. The set of zero-order 
equations resulting from this has been derived in Ref. 5. 

4. E X A M P L E :  SMALL BINARY INTERACTION COEFFICIENTS 

We have worked out the equations of the perturbation method for the 
example in the last section: multicomponent mixtures described through a 
two-parameter equation of state. The Gibbs free energy function ~or such a 
mixture is of the form 

G=NRT ~ xilogxi+g(a,b,p,T) (33) 
i = 1  

The chemical potential (per RT) resulting from this can be written as 

~i=_-~T=lOgxi+Co+C,ei+C2b i with ei = ~ aijxj (34) 
j = l  

where the coefficients C k can be expressed in g and its first-order partial 

derivatives. For the unperturbed system, for which au=x/aiaj, we 
introduce a 3 x n-matrix ~ with elements 

~Oi: ]; ~ l i = ~ i ;  fl2i=bi ( 3 5 )  

so that the unperturbed chemical potential (per RT) can be written as 

2 

/iio = log xi + ~ Ctfl,i (36) 
l = 0  

The computational advantage of using the unperturbed system lies in the 
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fact that no multiple summations have to be performed repeatedly and that 
it is possible to reduce the equation system to a set of only three. 

We now investigate the linear set of equations (10), which we write 
briefly as 

A4=/~ (37) 

where the right-hand side is assumed to be known. These equations occur 
in three different places, each time with a different right-hand side: first, as 
the Newton-Raphson correction equations for the unperturbed system; 
second, as the equations relating composition, pressure, and temperature of 
neighboring states; and third, as the correction equations in the pertur- 
bation method. So if a Newton-Raphson method is used to solve the 
unperturbed equations, the final Jacobian matrix can also be used in the 
perturbation corrections and to generate initial conditions in a neighboring 
point. The fact that Eq. (37) can be simplified, as we show, in accordance 
with the theorem mentioned in Section 3, is therefore very useful. For 
saturation-point calculations, irk and/or Pk must be calculated first [see 
below Eq. (15)]. The matrix in Eq. (37) is singular for that case, but this 
does not essentially change the following discussion. In general, the matrix 
A is a sum of contributions from both phases [see Eq. (11)]. These can be 
derived from differentiation of (Eq. (34) with respect to composition and 
substitution of e = 0: 

~ . = ~  + ~ 2 2 
x~ 2 E ClmflliflmJY (38) 

t = 0  m = 0  

The coefficients Cfm involve the first and second derivatives of g with 
respect to a and b. The complete matrix is therefore of the form 

X = A + ~Cfl (39) 

where A is a diagonal matrix with elements 

XF (40) 
Aii = ~b(1 - r x~x v 

and 

C L C v C=74 1 - r  (41) 

Substitution of Eq. (39) into Eq. (37) yields the relation: 

4 = A -~(R-- iTcfl4) (42) 
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which expresses 4 in the three-vector s  flq, involving 4 itself. If we now 
multiply Eq. (42) with fl from the left, we obtain an equation for 5: 

S s  RA -1R (43) 

which involves the 3 x 3 matrix 

S = I+/~A -1]~C (44) 

Th~ solution s must be substituted back into Eq. (42) to yield the solution 
of Eq. (37). Thus, Eq. (37) can indeed be reduced to a set of only three 
linear equations. 

As an illustration, we give some numerical results. For a flash cal- 
culation of a 17-component mixture, we show the deviations in the liquid 
composition from the exact values in Table I, in zero, first, and second 
order. The Soave equation of state was used. The largest binary inter- 
action coefficient was 0.15. The largest deviations observed are for CO2, 
which has a relatively large interaction coefficient with most of the other 
components. By "exact values" we mean the values obtained from the 
exact solution of the complete flash equations. In Table II we give CPU 

Table I. Flash Calculation for a 17-Component Mixture a 

Compound Unperturbed First order Second order Exact value 

N i  0.28 - 0.44 0.02 0 . 1 0 1 4 E -  01 

Methane 0.25 0.00 0.00 0 . 4 2 3 5 E +  00 
Ethane - 0.29 0.00 0.00 0 . 5 7 9 7 E -  01 

C O 2  36.45 - 6.00 0.60 0 . 1 4 2 6 E  - 01 

H 2 S  8.56 - 0. 38 0.03 0 . 7 1 3 0 E -  02 

Propane - 0.70 0.00 0.00 0 . 3 6 4 4 E -  01 

/-Butane - 0 . 9 7  0.00 0.00 0 . 1 0 9 5 E - - 0 1  

n-Butane --  1.06 0.01 0.00 0 . 2 1 5 5 E - 0 1  

i-Pentane - 1.32 0.02 0.00 0 . 1 2 7 9 E - 0 1  

n-Pentane - 1.38 0.02 0.00 0 . 1 2 2 4 E - 0 1  

n-Hexane --  1..65 0.05 0.00 0.2773 E - 01 

Toluene --  1.56 0.29 - 0.03 0 . 2 4 6 0 E - -  01 

n-Octane --  1.94 0.12 - 0.01 0 . 9 5 9 3 E - - 0 1  

n-Undecane --  1.82 0.25 - 0.02 0 . 1 1 8 1 E  + 00 
n-Tetradecane - 1.54 0.32 - 0 . 0 2  0 . 7 2 8 9 E - - 0 1  

n-Heptadecane --  1.39 0.35 - 0 . 0 3  0 . 3 2 6 1 E - 0 1  

n-Eicosane --  1.32 0.35 - 0.03 0 . 2 1 1 0 E -  01 

a Liquid composition at T =  350 K a n d  p =  150 bar; procentual deviations from the exact 
value in the various orders. 
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Table II. CPU Times for a Single Bubble-Point Pressure Calculation for a Multicomponent 
Mixture as a Function of the Number of Components n: Comparison of the 

Traditional Direct Substitution Method with the Perturbation Method 
(Up to Second-Order Correction Has been Applied) 

Direct substitution Zero order Correction 
(ms/iteration) (ms/iteration) (ms) 

20 0.5 0.5 1.0 
30 0.9 0.6 1.6 
40 1.5 0.7 2.4 

times for a single bubble-point calculation as a function of the number of 
components in a (hypothetical) mixture, on an IBM 3090 mainframe. We 
compare the time needed for a single iteration in the traditional direct sub- 
stitution method with that needed for a single iteration for the unperturbed 
system. We also give the time needed to obtain the correction up to second 
order. It is seen that the computation time per iteration increases only 
linearly with the number of components in the perturbation method, 
whereas it increases much faster in the direct substitution method. This 
effect is due to the multiple summations occurring in the mixing rules. The 
reader should realize that on top of this advantage, the number of 
iterations can be much lower in the perturbation method, especially near 
critical points, due to the quadratic convergence of the Newton-Raphson 
method. Solving the correction equations, which do contain multiple sum- 
mations, takes more time but must be done only once. We have not 
applied any special acceleration procedures in both methods, in order to 
exhibit clearly the computational advantage of the perturbation method, 
which is the linear increase in computational effort with the number of 
components and the quadratic convergence. 

If a given mixture contains some components whose interaction coef- 
ficients cannot be neglected, it is still possible to apply the method 
described here, by chosing the unperturbed system such that only the other 
binary interaction coefficients vanish. How this can be done in a systematic 
way has been described in Ref. 3 (see also Ref. 6). If there are L "special" 
components, the dimensionality of the unperturbed system will become 
2L + 3 (rather than three). By a judicious choice of these special com- 
ponents, a balance between accuracy and computation time is achieved. 
Note that if the remaining interaction coefficients are very small, first-order 
correction will suffice. 

In practice, of course, what is needed, especially in large problems, is a 
fast and robust algorithm (or combination of algorithms) involving 
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initialization procedures, stability tests (accelerated), direct substitutions, 
Newton-Raphson iterations, etc. In each subprocedure advantage can be 
taken of the special structure of the zero-order problem. Therefore in 
general it will be possible to find a value n beyond which the perturbation 
method leads to computational savings (at the cost of some loss of 
accuarcy). We expect that it will offer an attractive alternative, especially in 
very large problems. In a process simulator, for instance, a possible 
strategy is first to carry out a complete simulation with e = 0 and then to 
apply the corrections (in each unit). 

5. C O N C L U S I O N  

We have presented a general scheme for the solution of phase 
equilibrium equations by means of a perturbation expansion, together with 
a method to find a suitable zero-order system. It may be used to obtained 
approximate solutions to difficult problems or to investigate the influence 
of certain model parameters on the solution. The example of multicom- 
ponent mixtures described by a two-parameter equation of state with small 
binary interaction coefficients shows that it can also be used to reduce 
computational effort, if the number of compounds n is large enough. 

The perturbation method naturally divides into two parts: the solution 
of the zero-order problem and the evaluation of the correction. The zero- 
order problem must be simpler to solve than the full problem. To obtain 
the correction in each order a set of n linear equations has to be solved. 
However, if the zero-order system is chosen according to the described 
method, the dimensionality of this set can reduced to a small number, 
independent of n. The same reduction applies to the zero-order system 
itself. 
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